--- /dev/null
+/****************************************************************************
+ * extdrv/tsl256x_light_sensor.c
+ *
+ * TSL256x I2C luminosity and IR sensor driver
+ *
+ * Copyright 2016 Nathael Pajani <nathael.pajani@ed3l.fr>
+ *
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *************************************************************************** */
+
+
+#include "lib/stdint.h"
+#include "core/system.h"
+#include "lib/errno.h"
+#include "drivers/i2c.h"
+
+#include "extdrv/tsl256x_light_sensor.h"
+
+
+
+/* Check the sensor presence, return 1 if found
+ * This is done by writing to the control register to set the power state to ON and
+ * reading the register to check the value, as stated in the TSL256x documentation page 14,
+ * (Register Set definitions)
+ * FIXME : Never managed to read the required value, though the sensor is running and
+ * provides seemingly accurate values.
+ */
+#define PROBE_BUF_SIZE 3
+int tsl256x_probe_sensor(struct tsl256x_sensor_config* conf)
+{
+ int ret = 0;
+ char cmd_buf[PROBE_BUF_SIZE] = { conf->addr, TSL256x_CMD(control), TSL256x_POWER_ON, };
+ char ctrl_buf[PROBE_BUF_SIZE] = { I2C_CONT, I2C_DO_REPEATED_START, I2C_CONT, };
+ uint8_t control_val = 0;
+
+ /* Did we already probe the sensor ? */
+ if (conf->probe_ok != 1) {
+ ret = i2c_write(conf->bus_num, cmd_buf, PROBE_BUF_SIZE, NULL);
+ if (ret != PROBE_BUF_SIZE) {
+ return 0;
+ }
+ msleep(500);
+ cmd_buf[2] = (conf->addr | I2C_READ_BIT);
+ ret = i2c_read(conf->bus_num, cmd_buf, PROBE_BUF_SIZE, ctrl_buf, &control_val, 1);
+ /* FIXME : check that control_val is TSL256x_POWER_ON ... */
+ if (ret == 1) {
+ conf->probe_ok = 1;
+ }
+ }
+ return conf->probe_ok;
+}
+
+
+
+/* FIXME: add comments, and make it work right ... never managed to read the ID given in
+ * the documentation
+ */
+
+#define ID_BUF_SIZE 3
+int tsl256x_read_id(struct tsl256x_sensor_config* conf)
+{
+ int ret = 0;
+ char cmd_buf[ID_BUF_SIZE] = { conf->addr, TSL256x_CMD(part_id), (conf->addr | I2C_READ_BIT), };
+ char ctrl_buf[ID_BUF_SIZE] = { I2C_CONT, I2C_DO_REPEATED_START, I2C_CONT, };
+ uint8_t id = 0;
+
+ /* Did we already probe the sensor ? */
+ if (conf->probe_ok != 1) {
+ return 0;
+ }
+ ret = i2c_read(conf->bus_num, cmd_buf, ID_BUF_SIZE, ctrl_buf, &id, 1);
+ if (ret != 1) {
+ conf->probe_ok = 0;
+ return ret;
+ }
+ return id;
+}
+
+
+/* Lux Read
+ * Performs a non-blocking read of the luminosity from the sensor.
+ * 'lux' 'ir' and 'comb': integer addresses for conversion result, may be NULL.
+ * Return value(s):
+ * Upon successfull completion, returns 0 and the luminosity read is placed in the
+ * provided integer(s). On error, returns a negative integer equivalent to errors from
+ * glibc.
+ */
+#define READ_BUF_SIZE 3
+int tsl256x_sensor_read(struct tsl256x_sensor_config* conf, uint16_t* comb, uint16_t* ir, uint32_t* lux)
+{
+ int ret = 0;
+ char cmd_buf[READ_BUF_SIZE] = { conf->addr, TSL256x_CMD(data), (conf->addr | I2C_READ_BIT), };
+ char ctrl_buf[READ_BUF_SIZE] = { I2C_CONT, I2C_DO_REPEATED_START, I2C_CONT, };
+ uint8_t data[4];
+ uint16_t comb_raw = 0, ir_raw = 0;
+
+ ret = i2c_read(conf->bus_num, cmd_buf, READ_BUF_SIZE, ctrl_buf, data, 4);
+ if (ret != 4) {
+ conf->probe_ok = 0;
+ return ret;
+ }
+ comb_raw = (data[0] & 0xFF) | ((data[1] << 8) & 0xFF00);
+ ir_raw = (data[2] & 0xFF) | ((data[3] << 8) & 0xFF00);
+
+ if (comb != NULL) {
+ *comb = comb_raw;
+ }
+ if (ir != NULL) {
+ *ir = ir_raw;
+ }
+ if (lux != NULL) {
+ *lux = calculate_lux(conf, comb_raw, ir_raw);
+ }
+
+ return 0;
+}
+
+
+/* Sensor config
+ * Performs default configuration of the luminosity sensor.
+ * FIXME : Add more comments about the behavior and the resulting configuration.
+ * Return value:
+ * Upon successfull completion, returns 0. On error, returns a negative integer
+ * equivalent to errors from glibc.
+ */
+#define CONF_BUF_SIZE 3
+int tsl256x_configure(struct tsl256x_sensor_config* conf)
+{
+ int ret = 0;
+ char cmd_buf[CONF_BUF_SIZE] = { conf->addr, TSL256x_CMD(timing), 0, };
+
+ cmd_buf[2] = (conf->gain | conf->integration_time);
+
+ if (tsl256x_probe_sensor(conf) != 1) {
+ return -ENODEV;
+ }
+ msleep(1);
+ ret = i2c_write(conf->bus_num, cmd_buf, CONF_BUF_SIZE, NULL);
+ if (ret != CONF_BUF_SIZE) {
+ conf->probe_ok = 0;
+ return -EIO;
+ }
+ return 0;
+}
+
+
+
+/***************************************************************************** */
+/*
+ * lux equation approximation without floating point calculations
+ *
+ * Description:
+ * Calculate the approximate illuminance (lux) given the raw channel values of
+ * the TSL2560. The equation if implemented as a piece−wise linear approximation.
+ *
+ * Arguments:
+ * uint16_t ch0 − raw channel value from channel 0 of TSL2560
+ * uint16_t ch1 − raw channel value from channel 1 of TSL2560
+ *
+ * Return: uint32_t − the approximate illuminance (lux)
+ *
+ */
+uint32_t calculate_lux(struct tsl256x_sensor_config* conf, uint16_t ch0, uint16_t ch1)
+{
+ /* First, scale the channel values depending on the gain and integration time
+ * 16X, 402mS is nominal.
+ * Scale if integration time is NOT 402 msec */
+ uint32_t chScale = 0;
+ uint32_t channel1 = 0, channel0 = 0;
+ uint32_t ratio = 0, lux = 0;
+ uint32_t b = 0, m = 0;
+
+ switch (conf->integration_time) {
+ case TSL256x_INTEGRATION_13ms: /* 13.7 msec */
+ chScale = CHSCALE_TINT0;
+ break;
+ case TSL256x_INTEGRATION_100ms: /* 101 msec */
+ chScale = CHSCALE_TINT1;
+ break;
+ case TSL256x_INTEGRATION_400ms: /* 402 msec */
+ default: /* assume no scaling */
+ chScale = (1 << CH_SCALE);
+ break;
+ }
+
+ /* Scale if gain is NOT 16X */
+ if (conf->gain == TSL256x_LOW_GAIN) {
+ chScale = chScale << 4; /* Scale 1X to 16X */
+ }
+
+ // Scale the channel values */
+ channel0 = (ch0 * chScale) >> CH_SCALE;
+ channel1 = (ch1 * chScale) >> CH_SCALE;
+
+ /* Find the ratio of the channel values (Channel1/Channel0) */
+ /* Protect against divide by zero */
+ if (channel0 != 0) {
+ ratio = (channel1 << (RATIO_SCALE + 1)) / channel0;
+ }
+ /* Round the ratio value */
+ ratio = (ratio + 1) >> 1;
+
+ /* Is ratio <= eachBreak ? */
+ switch (conf->package) {
+ case TSL256x_PACKAGE_T:
+ case TSL256x_PACKAGE_FN:
+ case TSL256x_PACKAGE_CL:
+ if ((ratio >= 0) && (ratio <= K1T)) {
+ b = B1T; m = M1T;
+ } else if (ratio <= K2T) {
+ b = B2T; m = M2T;
+ } else if (ratio <= K3T) {
+ b = B3T; m = M3T;
+ } else if (ratio <= K4T) {
+ b = B4T; m = M4T;
+ } else if (ratio <= K5T) {
+ b = B5T; m = M5T;
+ } else if (ratio <= K6T) {
+ b = B6T; m = M6T;
+ } else if (ratio <= K7T) {
+ b = B7T; m = M7T;
+ } else if (ratio > K8T) {
+ b = B8T; m = M8T;
+ } break;
+ case TSL256x_PACKAGE_CS: /* CS package */
+ if ((ratio >= 0) && (ratio <= K1C)) {
+ b = B1C; m = M1C;
+ } else if (ratio <= K2C) {
+ b = B2C; m = M2C;
+ } else if (ratio <= K3C) {
+ b = B3C; m = M3C;
+ } else if (ratio <= K4C) {
+ b = B4C; m = M4C;
+ } else if (ratio <= K5C) {
+ b = B5C; m = M5C;
+ } else if (ratio <= K6C) {
+ b = B6C; m = M6C;
+ } else if (ratio <= K7C) {
+ b = B7C; m = M7C;
+ }else if (ratio > K8C) {
+ b = B8C; m = M8C;
+ } break;
+ }
+ lux = ((channel0 * b) - (channel1 * m));
+
+ /* Do not allow negative lux value */
+ if (lux < 0) {
+ lux = 0;
+ }
+ /* Round lsb (2^(LUX_SCALE−1)) */
+ lux += (1 << (LUX_SCALE - 1));
+ /* Strip off fractional portion */
+ lux = lux >> LUX_SCALE;
+
+ return lux;
+}
+
--- /dev/null
+/****************************************************************************
+ * extdrv/tsl256x_light_sensor.h
+ *
+ * TSL256x I2C luminosity and IR sensor driver
+ *
+ * Copyright 2016 Nathael Pajani <nathael.pajani@ed3l.fr>
+ *
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ *************************************************************************** */
+
+
+#ifndef EXTDRV_TSL256X_H
+#define EXTDRV_TSL256X_H
+
+#include "lib/stdint.h"
+
+
+/* TSL256x sensor instance data.
+ * Use one of this for each sensor you want to access.
+ * - addr is the sensor address on most significant bits (8bits address).
+ */
+struct tsl256x_sensor_config {
+ uint8_t addr;
+ uint8_t bus_num;
+ uint8_t package;
+ uint8_t gain;
+ uint8_t integration_time;
+ uint8_t probe_ok;
+};
+
+enum tsl256x_pkg_types {
+ TSL256x_PACKAGE_T = 0,
+ TSL256x_PACKAGE_FN,
+ TSL256x_PACKAGE_CL,
+ TSL256x_PACKAGE_CS,
+};
+
+struct tsl256x_internal_regs {
+ uint8_t control; /* Control of basic functions */
+ uint8_t timing; /* Integration time/gain control */
+ uint16_t low_int_threshold; /* low interrupt threshold, in little endian byte order */
+ uint16_t high_int_threshold; /* high interrupt threshold, in little endian byte order */
+ uint8_t interrupt; /* interrupt control */
+ uint8_t reserved0[3];
+ uint8_t part_id; /* Part number and revision ID */
+ uint8_t reserved1;
+ uint16_t data[2]; /* Data from both ADC, in little endian byte order */
+};
+#define TSL256x_REGS(x) ((uint8_t)offsetof(struct tsl256x_internal_regs, x))
+
+/* Defines for command byte */
+#define TSL256x_CMD_REG_SELECT (1 << 7)
+#define TSL256x_INT_CLEAR (1 << 6)
+#define TSL256x_USE_WORD (1 << 5)
+#define TSL256x_USE_BLOCK (1 << 4)
+#define TSL256x_REG_ADDR(x) ((x) & 0x0F)
+
+#define TSL256x_CMD(x) (TSL256x_CMD_REG_SELECT | TSL256x_REGS(x))
+
+/* Defines for control register */
+#define TSL256x_POWER_ON (0x03)
+
+/* Defines for timing register */
+/* See page 22 of tsl256x manual for information on how to calculate lux. */
+#define TSL256x_LOW_GAIN (0x00)
+#define TSL256x_HIGH_GAIN_16X (1 << 4)
+#define TSL256x_CONVERSION_START (1 << 3)
+#define TSL256x_CONVERSION_MANUAL (0x03)
+#define TSL256x_INTEGRATION_400ms (0x02)
+#define TSL256x_INTEGRATION_100ms (0x01)
+#define TSL256x_INTEGRATION_13ms (0x00)
+
+/* Defines for interrupt control register */
+#define TSL256x_INTR_NONE (0x00)
+#define TSL256x_INTR_LEVEL (0x01 << 4)
+#define TSL256x_INTR_SMBUS (0x02 << 4)
+#define TSL256x_INTR_ON_CONV_DONE (0x00)
+#define TSL256x_INTR_NB_CYCLE(x) ((x) & 0x0F)
+
+/* Defines for part ID and revision ID register */
+#define TSL256x_PART_ID(x) (((x) & 0xF0) >> 4)
+#define TSL256x_PART_REV(x) ((x) & 0x0F)
+
+
+/***************************************************************************** */
+
+/* Check the sensor presence, return 1 if found
+ * This is done by writing to the control register to set the power state to ON and
+ * reading the register to check the value, as stated in the TSL256x documentation page 14,
+ * (Register Set definitions)
+ * FIXME : Never managed to read the required value, though the sensor is running and
+ * provides seemingly accurate values.
+ */
+int tsl256x_probe_sensor(struct tsl256x_sensor_config* conf);
+
+
+/* FIXME: add comments, and make it work right ... never managed to read the ID given in
+ * the documentation
+ */
+int tsl256x_read_id(struct tsl256x_sensor_config* conf);
+
+
+/* Sensor read
+ * Performs a non-blocking read of the luminosity from the sensor.
+ * 'lux' 'ir' and 'comb': integer addresses for conversion result, may be NULL.
+ * Return value(s):
+ * Upon successfull completion, returns 0 and the luminosity read is placed in the
+ * provided integer(s). On error, returns a negative integer equivalent to errors from
+ * glibc.
+ */
+int tsl256x_sensor_read(struct tsl256x_sensor_config* conf, uint16_t* comb, uint16_t* ir, uint32_t* lux);
+
+
+/* Sensor config
+ * Performs default configuration of the luminosity sensor.
+ * FIXME : Add more comments about the behavior and the resulting configuration.
+ * Return value:
+ * Upon successfull completion, returns 0. On error, returns a negative integer
+ * equivalent to errors from glibc.
+ */
+int tsl256x_configure(struct tsl256x_sensor_config* conf);
+
+
+
+
+/***************************************************************************** */
+/* Lux Computation
+ *
+ * Copyright E 2004−2005 TAOS, Inc.
+ *
+ * THIS CODE AND INFORMATION IS PROVIDED ”AS IS” WITHOUT WARRANTY OF ANY KIND,
+ * EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.
+ */
+
+#define LUX_SCALE 14 /* scale by 2^14 */
+#define RATIO_SCALE 9 /* scale ratio by 2^9 */
+
+/* Integration time scaling factors */
+#define CH_SCALE 10 /* scale channel values by 2^10 */
+#define CHSCALE_TINT0 ((322 / 11) * (2 << CH_SCALE)) /* = 0x7517 = 322/11 * 2^CH_SCALE */
+#define CHSCALE_TINT1 ((322 / 81) * (2 << CH_SCALE)) /* = 0x0fe7 = 322/81 * 2^CH_SCALE */
+
+
+/*
+ * lux equation approximation without floating point calculations
+ *
+ * Description:
+ * Calculate the approximate illuminance (lux) given the raw channel values of
+ * the TSL2560. The equation if implemented as a piece−wise linear approximation.
+ *
+ * Arguments:
+ * uint16_t ch0 − raw channel value from channel 0 of TSL2560
+ * uint16_t ch1 − raw channel value from channel 1 of TSL2560
+ *
+ * Return: uint32_t − the approximate illuminance (lux)
+ *
+ */
+uint32_t calculate_lux(struct tsl256x_sensor_config* conf, uint16_t ch0, uint16_t ch1);
+
+/*
+ * T, FN, and CL Package coefficients
+ *
+ * For Ch1/Ch0=0.00 to 0.50 : Lux/Ch0=0.0304−0.062*((Ch1/Ch0)^1.4)
+ * piecewise approximation
+ * For Ch1/Ch0=0.00 to 0.125: Lux/Ch0=0.0304−0.0272*(Ch1/Ch0)
+ * For Ch1/Ch0=0.125 to 0.250: Lux/Ch0=0.0325−0.0440*(Ch1/Ch0)
+ * For Ch1/Ch0=0.250 to 0.375: Lux/Ch0=0.0351−0.0544*(Ch1/Ch0)
+ * For Ch1/Ch0=0.375 to 0.50: Lux/Ch0=0.0381−0.0624*(Ch1/Ch0)
+ *
+ * For Ch1/Ch0=0.50 to 0.61: Lux/Ch0=0.0224−0.031*(Ch1/Ch0)
+ *
+ * For Ch1/Ch0=0.61 to 0.80: Lux/Ch0=0.0128−0.0153*(Ch1/Ch0)
+ *
+ * For Ch1/Ch0=0.80 to 1.30: Lux/Ch0=0.00146−0.00112*(Ch1/Ch0)
+ *
+ * For Ch1/Ch0>1.3: Lux/Ch0=0
+ *
+ */
+#define K1T 0x0040 /* 0.125 * 2^RATIO_SCALE */
+#define B1T 0x01f2 /* 0.0304 * 2^LUX_SCALE */
+#define M1T 0x01be /* 0.0272 * 2^LUX_SCALE */
+#define K2T 0x0080 /* 0.250 * 2^RATIO_SCALE */
+#define B2T 0x0214 /* 0.0325 * 2^LUX_SCALE */
+#define M2T 0x02d1 /* 0.0440 * 2^LUX_SCALE */
+#define K3T 0x00c0 /* 0.375 * 2^RATIO_SCALE */
+#define B3T 0x023f /* 0.0351 * 2^LUX_SCALE */
+#define M3T 0x037b /* 0.0544 * 2^LUX_SCALE */
+#define K4T 0x0100 /* 0.50 * 2^RATIO_SCALE */
+#define B4T 0x0270 /* 0.0381 * 2^LUX_SCALE */
+#define M4T 0x03fe /* 0.0624 * 2^LUX_SCALE */
+#define K5T 0x0138 /* 0.61 * 2^RATIO_SCALE */
+#define B5T 0x016f /* 0.0224 * 2^LUX_SCALE */
+#define M5T 0x01fc /* 0.0310 * 2^LUX_SCALE */
+#define K6T 0x019a /* 0.80 * 2^RATIO_SCALE */
+#define B6T 0x00d2 /* 0.0128 * 2^LUX_SCALE */
+#define M6T 0x00fb /* 0.0153 * 2^LUX_SCALE */
+#define K7T 0x029a /* 1.3 * 2^RATIO_SCALE */
+#define B7T 0x0018 /* 0.00146 * 2^LUX_SCALE */
+#define M7T 0x0012 /* 0.00112 * 2^LUX_SCALE */
+#define K8T 0x029a /* 1.3 * 2^RATIO_SCALE */
+#define B8T 0x0000 /* 0.000 * 2^LUX_SCALE */
+#define M8T 0x0000 /* 0.000 * 2^LUX_SCALE*/
+
+
+/*
+ * CS package coefficients
+ *
+ * For 0 <= Ch1/Ch0 <= 0.52 : Lux/Ch0 = 0.0315−0.0593*((Ch1/Ch0)^1.4)
+ * piecewise approximation
+ * For 0 <= Ch1/Ch0 <= 0.13 : Lux/Ch0 = 0.0315−0.0262*(Ch1/Ch0)
+ * For 0.13 <= Ch1/Ch0 <= 0.26 : Lux/Ch0 = 0.0337−0.0430*(Ch1/Ch0)
+ * For 0.26 <= Ch1/Ch0 <= 0.39 : Lux/Ch0 = 0.0363−0.0529*(Ch1/Ch0)
+ * For 0.39 <= Ch1/Ch0 <= 0.52 : Lux/Ch0 = 0.0392−0.0605*(Ch1/Ch0)
+ *
+ * For 0.52 < Ch1/Ch0 <= 0.65 : Lux/Ch0 = 0.0229−0.0291*(Ch1/Ch0)
+ *
+ * For 0.65 < Ch1/Ch0 <= 0.80 : Lux/Ch0 = 0.00157−0.00180*(Ch1/Ch0)
+ *
+ * For 0.80 < Ch1/Ch0 <= 1.30 : Lux/Ch0 = 0.00338−0.00260*(Ch1/Ch0)
+ *
+ * For Ch1/Ch0 > 1.30 : Lux = 0
+ *
+ */
+#define K1C 0x0043 /* 0.130 * 2^RATIO_SCALE */
+#define B1C 0x0204 /* 0.0315 * 2^LUX_SCALE */
+#define M1C 0x01ad /* 0.0262 * 2^LUX_SCALE */
+#define K2C 0x0085 /* 0.260 * 2^RATIO_SCALE */
+#define B2C 0x0228 /* 0.0337 * 2^LUX_SCALE */
+#define M2C 0x02c1 /* 0.0430 * 2^LUX_SCALE */
+#define K3C 0x00c8 /* 0.390 * 2^RATIO_SCALE */
+#define B3C 0x0253 /* 0.0363 * 2^LUX_SCALE */
+#define M3C 0x0363 /* 0.0529 * 2^LUX_SCALE*/
+#define K4C 0x010a /* 0.520 * 2^RATIO_SCALE */
+#define B4C 0x0282 /* 0.0392 * 2^LUX_SCALE */
+#define M4C 0x03df /* 0.0605 * 2^LUX_SCALE */
+#define K5C 0x014d /* 0.65 * 2^RATIO_SCALE */
+#define B5C 0x0177 /* 0.0229 * 2^LUX_SCALE */
+#define M5C 0x01dd /* 0.0291 * 2^LUX_SCALE */
+#define K6C 0x019a /* 0.80 * 2^RATIO_SCALE */
+#define B6C 0x0101 /* 0.0157 * 2^LUX_SCALE */
+#define M6C 0x0127 /* 0.0180 * 2^LUX_SCALE */
+#define K7C 0x029a /* 1.3 * 2^RATIO_SCALE */
+#define B7C 0x0037 /* 0.00338 * 2^LUX_SCALE */
+#define M7C 0x002b /* 0.00260 * 2^LUX_SCALE */
+#define K8C 0x029a /* 1.3 * 2^RATIO_SCALE */
+#define B8C 0x0000 /* 0.000 * 2^LUX_SCALE */
+#define M8C 0x0000 /* 0.000 * 2^LUX_SCALE*/
+
+
+#endif /* EXTDRV_TSL256X_H */
+
+